

n.11-2018 Profiscientia

Alta Disponibilidade em containers Docker por meio do

Docker Swarm

High Availability in Docker containers by Docker Swarm

Luiz Carlos da Silva Filho1

Roberto Benedito de Oliveira Pereira2

Resumo

A virtualização é uma tecnologia que proporciona a execução simultânea de

dois ou mais sistemas operacionais ou aplicações em uma máquina física. Com

a virtualização é possível otimizar o uso dos recursos de uma máquina física

por meio da distribuição desses recursos entre vários usuários ou ambientes.

Além de proporcionar a otimização de uso, a virtualização deve prover ou ser

amparada por técnicas ou mecanismos que garantam a sua execução durante o

maior tempo possível e que seja tolerante à falhas. Este trabalho aborda a

ferramenta Docker, que é baseada na virtualização por containers, e o Docker

Swarm, responsável por prover a alta disponibilidade de containers, permitindo

que serviços computacionais estejam disponíveis o maior tempo possível.

Palavras-chave: virtualização, containers, Docker, alta disponibilidade

1 Bacharel em Ciência da Computação pela Universidade Federal de Mato Grosso. Email:

lcdsf1@hotmail.com
2 Professor Adjunto da Universidade Federal de Mato Grosso. Email: roberto@ic.ufmt.br

58

n.11-2018 Profiscientia

Abstract

 Virtualization is a technology that can execute more than one operating

system or application simultaneously in a single physical machine. With

virtualization is to possible optimize the usage of resources from a physical

machine by distributing its resources among users or environments. Besides

providing usage optimization, virtualization must also provide or be aided by

techniques or mechanisms that guarantee its uptime for as long as possible,

with fault tolerance capacity. This paper approaches the Docker virtualization

tool, that is based on container virtualization, and Docker Swarm, a native

Docker tool that provides container high availability, thus, making critical

computational service available as long as possible.

Keywords: virtualization, containers, Docker, high availability

59

n.11-2018 Profiscientia

1 INTRODUÇÃO

A virtualização é uma tecnologia que proporciona a execução simultânea de dois

ou mais sistemas operacionais ou aplicações em uma máquina física (MENEZES;

MATTOS, 2008). Com a virtualização é possível utilizar todos os recursos de uma

máquina física por meio da distribuição desses recursos entre vários usuários ou

ambientes (REDHAT, 2017).

Nos últimos anos, a aplicação da técnica de virtualização de servidores tem

tomado uma representatividade considerável no mercado de trabalho, pois é um método

que pode executar vários sistemas operacionais e aplicações em uma única máquina

(BUI, 2015). Vários benefícios são obtidos com a virtualização, como a otimização do

uso dos recursos computacionais, a redução de custos, a abstração dos recursos

computacionais (LI, 2015) e a flexibilidade no desenvolvimento de sistemas devido à

sua capacidade de alocação de recursos de hardware e software de forma dinâmica

(NAIK, 2016).

A virtualização, atualmente, é baseada em dois métodos: máquinas virtuais

(também conhecido como hypervisor) ou containers, que serão detalhados no decorrer

do trabalho. A virtualização por máquina virtual — também conhecida como VM — é

o método utilizado pela maioria das empresas (BERNSTEIN, 2014), porém, a

virtualização por containers tem crescido consideravelmente nos últimos anos, pois é

um método que exige menos recursos que as máquinas virtuais, sendo possível

implantar e migrar serviços em um tempo menor. (NAIK, 2016). A ferramenta de

virtualização por containers denominada Docker é consideravelmente utilizada

atualmente, sendo a líder mundial deste segmento no mercado (DOCKER. 2017).

Logo, o objetivo geral do trabalho é prover alta disponibilidade em sistemas de

containers Docker por meio do Docker Swarm e observar como o sistema se comporta

em situações de falhas rotineiras,como a queda de um serviço do servidor ou até mesmo

um erro de sistema.

2 FUNDAMENTAÇÃO TEÓRICA

2.1 Virtualização por Hypervisor (máquinas virtuais)

60

n.11-2018 Profiscientia

A virtualização neste método ocorre em nível de hardware. Um hypervisor é o

software responsável pelo gerenciamento de máquinas virtuais que são executadas sobre

o Sistema Operacional (SO) hospedeiro, ou seja, da própria máquina física. Cada

máquina virtual possui o seu próprio SO (conhecido como convidado) com o seu

próprio núcleo, aplicações e suas dependências (binários e bibliotecas).

 Existem dois tipos de hypervisors (Figura 1): Tipo 1 e Tipo 2. O Tipo 1, também

conhecido como hypervisor bare metal, funciona diretamente sobre o hardware da

máquina física e o Tipo 2, que funciona sobre o SO hospedeiro. A camada a mais

presente no Tipo 2 faz com que o Tipo 1 se sobressaia no quesito performance (BUI,

2015). As principais ferramentas de virtualização que trabalham com hypervisors são:

VMware, Xen, VirtualBox, KVM e Hyper-V.

Figura 1. Arquiteturas dos dois tipos de hypervisors

Fonte: (Adaptado de THOLETI, 2011)

2.2 Virtualização por Container

A virtualização por container, diferente dos hypervisors, ocorre em nível de

sistema operacional, ou seja, os containers estão sempre sobre o sistema operacional

hospedeiro. É um tipo de virtualização que utiliza o núcleo do sistema operacional

hospedeiro para executar múltiplos ambientes (BUI, 2015).

Os containers não exigem sistemas operacionais convidados, isso faz com que

este método de virtualização exija menos recursos da máquina física (enquanto uma

máquina virtual possui um tamanho em nível de gigabytes, um container está em nível

de megabytes), entretanto, é possível executar sistemas operacionais em containers. No

ponto de vista do sistema operacional hospedeiro, os containers são executados como

61

n.11-2018 Profiscientia

processos. Os recursos que eles utilizam podem ser compartilhados com a máquina

física ou alocados separadamente para cada container (BUI, 2015). Nos containers são

executados apenas as aplicações e suas dependências (binários e bibliotecas). O

esquema básico da virtualização por container é apresentado na Figura 2 (SHAVERS,

2017). As principais ferramentas de virtualização baseada em containers são LXC

(Linux Containers), Azure Container Service e Docker.

Figura 2. Arquitetura básica da virtualização por containers

Fonte: (Adaptado de SHAVERS, 2017)

2.3 Alta Disponibilidade

 Atualmente existe uma dependência considerável por serviços computacionais

para realizar tarefas de diversas naturezas, inclusive tarefas críticas, cujas falhas

causariam prejuízos materiais, financeiros ou até mesmo perda de vidas. No intuito de

mitigar esses prejuízos, são utilizadas diversas técnicas que visam garantir a

disponibilidade desses serviços (FILHO, 2004).

 A demanda crescente por infraestruturas computacionais designadas a servirem

sistemas críticos faz com que a HA se torne um recurso de considerável importância

atualmente (Heidi, 2016). Um sistema de HA tem o objetivo de estar o maior tempo

possível disponível para que o funcionamento de seus serviços não sejam interrompidos,

pois, todo serviço ou sistema está suscetível à falhas (PEREIRA, 2005).

 As falhas comuns em uma infraestrutura computacional podem ser de natureza

física, causada pelo mau funcionamento de algum componente e que podem ser

originadas por eventos como curtos-circuito ou o fim da vida útil de um ou mais

componentes. De natureza humana, por meio da má elaboração no projeto de sistemas,

62

n.11-2018 Profiscientia

assim como erros no processo de manutenção e operação de sistemas (FILHO, 2004). É

possível aplicar técnicas para contornar essas falhas, que são baseadas na replicação de

hardware e software (BASELINE DATA, 2016).

2.4 Docker

O Docker é a ferramenta de virtualização por containers. Os desenvolvedores de

software a utilizam para eliminar problemas de compatibilidade em seus programas.

Operadores utilizam o Docker para executar e gerenciar as suas aplicações lado a lado

em containers isolados para obter uma melhor densidade computacional. Empresas

usam o Docker para acelerar o desenvolvimento e a integração dos seus softwares

(Docker, 2016). A ferramenta é instalada sobre o sistema operacional hospedeiro,

conforme a Figura 3.

Figura 2. Arquitetura do Docker

Fonte: (Adaptado de DOCKER, 2016)

2.5 Docker Swarm

Disponibilizada a partir da versão 1.12 do Docker, o Docker Swarm é uma

ferramenta nativa do Docker para a orquestração de clusters Docker. No contexto do

Docker Swarm, um swarm é um cluster de nós nos quais é possível implantar serviços.

Um nó é uma instância do Docker em execução. É possível executar um ou mais nós em

uma máquina (física ou virtual), mas o mais comum é a distribuição dos nós em

múltiplas máquinas (DOCKER DOCUMENTATION, 2017C).

O Docker Swarm dispõe de um gerenciamento de cluster integrado ao Docker,

63

n.11-2018 Profiscientia

que permite utilizar o console do Docker para criar swarms nos quais são implantados

aplicações (DOCKER DOCUMENTATION, 2017C).

No Docker Swarm, é possível declarar o número de tarefas a serem executadas

para cada serviço desejado pelo usuário. Quando se escala para mais ou para menos, o

gerenciador de swarm adapta automaticamente por meio da adição ou remoção de

tarefas para manter o estado desejado. O Docker Swarm dispõe da funcionalidade de

balanceamento de carga, na qual é possível expor as portas de serviços para um

balanceador de carga externo. Internamente, o gerenciador de swarm permite que o

usuário especifique como distribuir os containers de serviço entre os nós (DOCKER

DOCUMENTATION, 2017C).

Quanto à HA, o Docker Swarm utiliza o gerenciador de swarm, que monitora

constantemente o estado do swarm e reconcilia qualquer diferença entre o estado atual e

o estado desejado pelo usuário. Por exemplo, um usuário define um serviço para ser

executado em 10 réplicas de um container, e uma máquina que hospeda 2 dessas

réplicas falha, o gerenciador de swarm atribui novas réplicas às outras máquinas que

estão disponíveis e em execução (DOCKER DOCUMENTATION, 2017C).

3 MATERIAIS E MÉTODOS

3.1 Cenários de teste

Cada máquina virtual possui 1 unidade de armazenamento com RAID 5

composto por 3 SSDs Samsung Evo 850 com capacidade de 50GB, 8GB de memória

RAM, 1 CPU Intel Xeon E52660 de 2.6GHz com 4 núcleos. O sistema operacional

utilizado nas máquinas virtuais é o Ubuntu Server.

Foram estabelecidos dois cenários, suas estruturas estão representada na Figura

4 e 5. As três máquinas virtuais executarão o Docker Swarm e em ambos os ambientes

executarão apenas um container do serviço, no intuito de confirmar a capacidade de

balanceamento de carga e HA do swarm.

O swarm se encontra em uma rede sobreposta à rede das VMs, esta rede possui

por padrão o nome "ingress" e é criada assim que um serviço é criado no swarm. Há a

possibilidade da criação de uma rede personalizada, por meio do comando docker

network create, no qual é possível definir o nome da rede, tipo do IP, gateway, entre

64

n.11-2018 Profiscientia

outras configurações.

Na figura 4, tem-se o ambiente destinado ao Estudo de Caso 1, neste cenário

será utilizada uma Imagem Docker de um servidor web Nginx, o nome do serviço é

"web", portanto, este serviço se trata de um servidor de páginas da Internet. A Imagem

do Nginx foi utilizada por ser oficial e a mais popular do Docker Hub (DOCKER HUB,

2018), além do fato de o Nginx ser um dos servidores web mais utilizados no mercado

atualmente, estando em terceiro lugar e com uma adoção crescente (NETCRAFT,

2018).

Figura 4. Esquema do cenário do serviço web

 Para os estudos de caso 2 e 3, tem-se um ambiente que realiza a integração de

sistemas distintos, pois executa um serviço de Broker MQTT Mosquitto, de nome

"mqtt", representado na Figura 5. O Mosquitto é um servidor de mensagens para

dispositivos IoT que possui a característica de ser leve, sendo possível executá-lo até

mesmo em microcontroladores (ECLIPSE FOUNDATION, 2018).

 Além das VMs e do Docker Swarm, o ambiente é composto por três

microcontroladores ESP8266, que serão responsáveis pelo envio de mensagens para o

Broker MQTT. O Node-RED, que se trata de uma ferramenta utilizada para a depuração

da programação de microcontroladores, que neste caso foi utilizado para a visualização

das conexões entre os ESPs e o Broker, assim como os dados enviados. O PC é o meio

que permite de fato visualizar o progresso dos testes, por meio da sua conexão ao Node-

RED.

65

n.11-2018 Profiscientia

Figura 5. Esquema do cenário do serviço mqtt

3.2 Estudos de caso

Como citado na seção anterior, foram definidos estudos de caso para a avaliação

da HA do Docker Swarm, os sistemas a serem executados nos serviços são o servidor

web Nginx e o Broker MQTT Mosquitto. A seguir, têm-se os detalhes de cada estudo de

caso a ser estudado com a ferramenta Docker Swarm.

3.2.1 Estudo de caso 1: Balanceamento de carga

Será observado como o Docker Swarm realiza a o balanceamento de carga ao

solicitar um serviço à uma VM que não esteja executando o container deste serviço, que

será criado por meio do comando docker service create --publish 80:80 --name web

nginx, sendo que: --publish 80:80 expõe a porta 80 dos containers para a porta 80 da

VM (é possível utilizar portas diferentes, neste caso foi utilizada a 80 para o container e

para as VMs pelo fato desta porta ser a padrão do protocolo HTTP), --name web define

que o nome do serviço será "web", e por fim, nginx é a Imagem Docker que será

utilizada no serviço. Logo após a execução do comando, o Docker Swarm informará o

andamento da criação do serviço e o seu status final (sucesso ou falha), será possível

acompanhar o status do serviço após a sua criação, por meio do comando docker service

66

n.11-2018 Profiscientia

ps web. O container será executado em apenas uma das três VMs.

3.2.2 Estudo de caso 2: Situação de falha de VM

Será uma continuação do Estudo de Caso 1, pois foi utilizado o mesmo

ambiente, porém, a VM que executava o único container será desligada. Durante a

execução do Docker Swarm, uma das máquinas virtuais será desligada, simulando uma

falha. Será observado como Docker Swarm contornará este problema para garantir a

continuidade da execução dos sistemas conforme o estado desejado.

3.2.3 Estudo de Caso 3: Alta disponibilidade no Broker MQTT com balanceamento de

carga

Será observado como o swarm (cluster de containers) do Docker Swarm se

comporta em um sistema integrado. Este problema consiste na execução de um serviço

de Broker MQTT no qual os microcontroladores ESP8266 estarão conectados um em

cada VM por meio de um IP e uma porta, o serviço "mqtt" executará somente um

container em uma VM, o objetivo é verificar se o swarm será capaz de realizar o

balanceamento de carga, ou seja, redirecionar requisições do serviço das VMs que não

possuem containers do serviço diretamente ao único container em execução.

4 RESULTADOS E DISCUSSÕES

4.1 Estudo de Caso 1

Figura 6. Comandos docker service create e docker ps

 Na Figura 6 tem-se o resultado do comando da criação do serviço web, que foi

67

n.11-2018 Profiscientia

criada com sucesso. Em seguida, tem-se a saída do comando docker ps web, que

apresenta o status atual do serviço "web", exibindo o ID, o nome e em qual nó (VM) o

container está sendo executado.

Foi realizado um teste de acesso à página padrão do Nginx por meio de um

navegador, na Figura 7 é possível visualizar que, apesar de apenas uma VM executar o

container do serviço, foi possível acessar pelos IPs de cada uma das 3 VMs (destacados

pela linha azul), dessa forma comprovando que o Docker Swarm realiza o

balanceamento de carga.

Figura 7. Acesso ao serviço "web" por meio das 3 VMs sendo realizado em um navegador

Outra prova do balanceamento de carga pode ser visto na Figura 8. O Nginx

possui um recurso de log acessível por meio do comando docker service logs web, que

exibe o container utilizado (destaque vermelho), os respectivos IPs da rede "ingress" de

cada VM (destaque verde), assim como os seus IPs reais (destaque amarelo).

Figura 8. Comando docker service logs web

4.2 Estudo de Caso 2

A VM desligada foi a Docker02. Na Figura 9, pode-se visualizar o que acontece

logo após o seu desligamento. O comando docker node ls lista os nós e o status de cada

68

n.11-2018 Profiscientia

um, a Docker02 está desativada (down), o comando docker service ps web mostra que o

container que anteriormente estava na Docker02 (destaque vermelho) foi migrado para a

Docker03 (destaque azul), dessa forma, garantindo a continuidade do serviço.

Figura 9. comandos docker node ls e docker service ps web

A Figura 10 mostra o acesso ao serviço por meio do navegador, desta vez, a

Docker02 estava indisponível (destaque vermelho), enquanto as outras VMs

continuaram ativas (destaques azuis), com o Docker Swarm realizando o balanceamento

de carga e garantindo a HA do serviço "web".

Figura 10. Acesso ao serviço web sendo realizado por meio de um navegador

Ao executar o comando docker service logs web (Figura 11) é possível verificar

que a VM Docker02 não está disponível. Os acessos às outras VMs foi realizada com

êxito, desta vez, com o container sendo executado na VM Docker03 (destaque azul). É

possível conferir que o ID do nó que representa a VM Docker02 (Destaque amarelo) é o

mesmo ID destacado na Figura 9.

69

n.11-2018 Profiscientia

Figura 11. Comando docker node ls e docker service logs web após o desligamento da VM Docker02

4.2.1 O fator da limitação de acesso às máquinas e a solução por meio de um servidor

DNS

Apesar do Docker Swarm realizar o balanceamento de carga, existe uma

limitação, não é possível definir um endereço IP ou um nome de serviço que sirva para

acessar as 3 VMs, portanto, não é possível acessar o serviço "web" por meio de um IP

de uma máquina com falha (screenshot do meio na Figura 10).

 Para contornar este problema, foi utilizada a associação de uma URL

"www.luiz.com" aos 3 endereços IP das VMs, esta associação foi realizada por meio de

um servidor DNS (mais detalhes no Anexo B), o que causou uma alteração no cenário

de testes, como demonstrado na Figura 12.

Figura 12. O cenário de testes do serviço web após a adição do servidor DNS

Para a validação desta solução, foram realizados testes com o serviço "web"

70

n.11-2018 Profiscientia

sendo executado com apenas 1 container e posteriormente com 10 containers. Em

ambos os testes foram realizados 4 acessos simultâneos à URL definida.

 O serviço "web" foi executado em um único container. O acesso simultâneo à

URL foi feita por meio do envio de um comando às 4 VMs ao mesmo tempo. A

realização de comandos simultâneos foi realizado por meio do cliente SSH MobaXterm.

As 4 VMs conseguiram acessar a página padrão do nginx. Ao observar o relatório do

serviço "web", nas últimas 4 linhas, tem-se o registro dos 4 últimos acesso à página do

serviço por meio do único container em execução (Figura 13).

Figura 13. Relatório do serviço web, com os 4 últimos registros de acesso à página do serviço

A Figura 14 apresenta a lista de containers do serviço "web" para o segundo

teste, sendo 10 réplicas. Aqui o procedimento foi o mesmo do teste anterior.

Figura 14. O serviço web executando 10 containers

Desta vez, o relatório do serviço "web" (Figura 15) mostra que 3 dos 10

containers atenderam a requisição, assim provando que o uso de um servidor DNS pode

ser um complemento no balanceamento de carga do Docker Swarm.

71

n.11-2018 Profiscientia

Figura 15. Relatório do serviço web sendo executado em 10 containers, com os 4 últimos

registros de acesso à página do serviço

4.3 Estudo de Caso 3

O serviço "mqtt" executou um Broker MQTT que recebeu as mensagens dos

ESPs, basicamente, o serviço consiste no envio de mensagens do ESP8266 para o

Broker MQTT. Para a visualização dessas mensagens, assim como o acompanhamento

geral da conexão entre os ESPs e o Broker MQTT, foi utilizada a ferramenta Node-

RED. Na Figura 16 é possível visualizar as 3 conexões deste teste, todas online.

Figura 16. Representação das três conexões entre os ESP8266 e as VMs

É possível verificar a conexão dos três ESPs no único container do serviço

"mqtt" por meio da visualização do log do serviço. Para isso foi necessário acessar o

container e executar o comando tail -f mosquitto.log. Na Figura 17 tem-se a saída do

comando, mostrando que o container recebeu conexões das três VMs, por meio dos IPs

da rede "ingress" e a porta que foi exposta no serviço "mqtt" (destaque verde).

Figura 17. Execução do comando tail -f mosquitto.log dentro do container

O Node-RED permite a visualização das mensagens que são enviadas pelos

72

n.11-2018 Profiscientia

ESPs ao Broker. No destaque é possível visualizar 3 endereços MAC distintos (Figura

18, destaques azuis), cada um está associado a um ESP8266. Os dados enviados pelos

ESPs são referentes à temperatura, umidade e luminosidade de uma sala.

Figura 18. Visualização dos dados enviados pelos ESPs ao Broker MQTT

É importante ressaltar que o serviço "mqtt" foi utilizado como Broker MQTT de

um Trabalho de Conclusão de Curso sobre persistência de dados do protocolo MQTT

em um cluster de banco de dados MongoDB, que também foi executado como um

serviço no Docker Swarm (MIRANDA, 2017). A captura de tela na Figura 19 mostra

alguns detalhes acerca dos dados trafegados pelo Broker do serviço "mqtt", nota-se que

passaram 13.106.733 dados pelo serviço.

Figura 19. Detalhes dos dados trafegados pelo serviço mqtt (MIRANDA, 2017)

73

n.11-2018 Profiscientia

5 CONCLUSÕES

Pelos resultados obtidos, foi constatado que o Docker Swarm é uma ferramenta

que consegue alcançar a HA por meio da migração de containers de um nó para o outro,

bem como a capacidade de realizar o balanceamento de carga dos seus serviços por

meio do redirecionamento de conexões de nós que não possuem container para aqueles

que possuem, embora necessite de ferramentas externas para redirecionar as solicitações

de acesso aos seus serviços.

No Estudo de Caso 1 foi possível verificar a capacidade de balanceamento de

carga do Docker Swarm por meio de um serviço de um servidor web, sendo possível

realizar o acesso ao serviço por meio dos 3 IPs, apesar de apenas uma das VMs executar

o container deste serviço.

No Estudo de Caso 2, foi verificada a capacidade de HA no serviço "web", por

meio de uma simulação de falha de VM. O Docker Swarm foi capaz de realizar a

migração do container da máquina com falha para outra que estava disponível no

swarm, entretanto, foi preciso utilizar um servidor DNS para realizar o balanceamento

de carga ao acessar o serviço por meio de uma única URL.

O Estudo de Caso 3 mostra que o Docker é capaz de trabalhar com integração de

sistemas distintos, sendo possível realizar a conexão de três microcontroladores aos nós

do swarm, bem como a capacidade de balanceamento de carga em ambientes desta

natureza, ou seja, com sistemas distintos.

Conclui-se que o Docker Swarm é uma ferramenta ideal para a execução de

serviços críticos devido ao seu balanceamento de carga e a garantia de HA em seus

serviços.

6 REFERÊNCIAS

BERNSTEIN, D. Containers and cloud: From LXC to docker to kubernetes. IEEE

Cloud Computing, 2014.

BUI, T. Analysis of Docker Security. 2015.

DATA, B. System High Availability and Hardware High Availability – What’s the

74

n.11-2018 Profiscientia

Difference? Baseline Data Services, 2016. Acesso em 13 de agosto de 2017. Disponível

em:

<https://baseline-data.com/blog/high-availability/system-hardware-high-availability-diff

erences/>.

DOCKER. Docker for the Virtualization Admin. 2016. Disponível em:

<https://goto.docker.com/rs/929-FJL-178/images/Docker-for-Virtualization-Admin-eBo

ok.pdf>.

DOCUMENTATION, D. About images, containers, and storage drivers. Docker Inc,

2017. Acesso em 11 de agosto de 2017. Disponível em:

<https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#images-

and-layers>.

DOCUMENTATION, D. Docker Glossary. Docker Inc, 2017. Acesso em 11 de agosto

de 2017. Disponível em: <https://docs.docker.com/glossary/?term=image>.

DOCUMENTATION, D. Overview of Docker Hub. Docker Inc, 2017. Acesso em 11

de agosto de 2017. Disponível em: <https://docs.docker.com/docker-hub/>.

DOCUMENTATION, D. Swarm mode overview. Docker Inc, 2017. Acesso em 14 de

agosto de 2017. Disponível em:

<https://docs.docker.com/engine/swarm/#feature-highlights>.

FILHO, N. A. P. Serviços de Pertinência para Clusters de Alta Disponibilidade.

Dissertação (Mestrado) — Universidade de São Paulo, São Paulo, Brasil, 2004. 23

FOUNDATION, ECLIPSE. Eclipse Mosquitto™ - An open source MQTT broker.

Acesso em 06 de novembro de 2018. Disponível em <https://mosquitto.org/>.

HEIDI, E. What is High Availability? DigitalOcean, 2016. Acesso em 20 de setembro

de 2017. Disponível em:

<https://www.digitalocean.com/community/tutorials/what-is-high-availability>.

75

n.11-2018 Profiscientia

HUB, DOCKER. Explore Official Repositories. Acesso em 06 de novembro de 2018.

Disponível em: <https://hub.docker.com/explore/>.

INC, D. Hardware and software requirements. Docker Inc, 2017. Acesso em 11 de

agosto de 2017. Disponível em:

<https://docs.docker.com/datacenter/ucp/1.1/installation/system-requirements/>.

INC, D. What is Docker? Docker Inc, 2017. Acesso em 9 de julho de 2017. Disponível

em: <https://www.docker.com/what-docker>.

LI, W.; KANSO, A. Comparing containers versus virtual machines for achieving high

availability. In: Proceedings - 2015 IEEE International Conference on Cloud

Engineering, IC2E 2015. [S.l.: s.n.], 2015]

MENEZES, D.; MATTOS, F. Virtualização: VMWare e Xen. 2008.

MERKEL, D. Docker: Lightweight Linux Containers for Consistent Development and

Deployment. Linux Journal, v. 2014, n. 239, 2014.

MIRANDA, T. L. R.; PEREIRA, R. B. d. O. Implementação de um Cluster de banco de

dados no Raspberry Pi com MongoDB para replicação e persistência dos dados IoT.

2017.

NAIK, N. Building a virtual system of systems using docker swarm in multiple clouds.

In: ISSE 2016 - 2016 International Symposium on Systems Engineering - Proceedings

Papers. [S.l.: s.n.], 2016.

NETCRAFT. August 2018 Web Server Survey. Acesso em 06 de novembro de 2018.

Disponível em <https://news.netcraft.com/archives/2018/08/24/august-2018-web-

server-survey.html>

PEREIRA, R. B. O. Alta Disponibilidade em Sistemas GNU/LINUX utilizando as

ferramentas Drbd, Heartbeat e Mon. 2005. 23

76

n.11-2018 Profiscientia

REDHAT. What is virtualization? RedHat, 2017. Acesso em 7 de julho de 2017.

Disponível em:

<https://www.redhat.com/pt-br/topics/virtualization/what-is-virtualization>.

ROUSE, M. What is legacy application? TechTarget, 2017. Acesso em 01 de agosto de

2017. Disponível em:

<http://searchitoperations.techtarget.com/denition/legacy-application>.

SHAVERS, M. 3 Drastic Reasons Containers are Causing a Seismic Shift in

Technology. LinkedIn, 2017. Acesso em 9 de agosto de 2017. Disponível em:

<https://www.linkedin.com/pulse/3-drastic-reasons-containers-causing-seismic-shift-ma

rk-shavers>.

THOLETI, B. P. Learn about hypervisors, system virtualization, and how it works in a

cloud environment. IBM, 2011. Acesso em 15 de agosto de 2017. Disponível em:

<https://www.ibm.com/developerworks/cloud/library/cl-hypervisorcompare/index.htm>

77

