Alta Disponibilidade em containers Docker por meio do

Docker Swarm

High Availability in Docker containers by Docker Swarm

Luiz Carlos da Silva Filho!

Roberto Benedito de Oliveira Pereira?

Resumo

A virtualizacdo é uma tecnologia que proporciona a execucao simultanea de
dois ou mais sistemas operacionais ou aplica¢cdes em uma maquina fisica. Com
a virtualizacdo é possivel otimizar o uso dos recursos de uma maquina fisica
por meio da distribuicdo desses recursos entre VArios usuarios ou ambientes.
Além de proporcionar a otimizacdo de uso, a virtualizacdo deve prover ou ser
amparada por técnicas ou mecanismos que garantam a sua execucao durante o
maior tempo possivel e que seja tolerante a falhas. Este trabalho aborda a
ferramenta Docker, que é baseada na virtualizagdo por containers, e o Docker
Swarm, responsavel por prover a alta disponibilidade de containers, permitindo
que servigos computacionais estejam disponiveis 0 maior tempo possivel.

Palavras-chave: virtualizagdo, containers, Docker, alta disponibilidade

! Bacharel em Ciéncia da Computacéo pela Universidade Federal de Mato Grosso. Email:
Icdsfl@hotmail.com
2 professor Adjunto da Universidade Federal de Mato Grosso. Email: roberto@ic.ufmt.br

58

n.11-2018 Profiscientia

Abstract

Virtualization is a technology that can execute more than one operating
system or application simultaneously in a single physical machine. With
virtualization is to possible optimize the usage of resources from a physical
machine by distributing its resources among users or environments. Besides
providing usage optimization, virtualization must also provide or be aided by
techniques or mechanisms that guarantee its uptime for as long as possible,
with fault tolerance capacity. This paper approaches the Docker virtualization
tool, that is based on container virtualization, and Docker Swarm, a native
Docker tool that provides container high availability, thus, making critical
computational service available as long as possible.

Keywords: virtualization, containers, Docker, high availability

59

n.11-2018 Profiscientia

1 INTRODUCAO

A virtualizacdo é uma tecnologia que proporciona a execucao simultanea de dois
ou mais sistemas operacionais ou aplicacbes em uma maquina fisica (MENEZES;
MATTQS, 2008). Com a virtualizacdo é possivel utilizar todos os recursos de uma
maquina fisica por meio da distribuicdo desses recursos entre varios usuarios ou
ambientes (REDHAT, 2017).

Nos ultimos anos, a aplicacdo da técnica de virtualizacdo de servidores tem
tomado uma representatividade consideravel no mercado de trabalho, pois € um método
que pode executar varios sistemas operacionais e aplicagbes em uma Gnica maquina
(BUI, 2015). Vérios beneficios sdo obtidos com a virtualizacdo, como a otimizacdo do
uso dos recursos computacionais, a reducdo de custos, a abstracdo dos recursos
computacionais (LI, 2015) e a flexibilidade no desenvolvimento de sistemas devido a
sua capacidade de alocacdo de recursos de hardware e software de forma dindmica
(NAIK, 2016).

A virtualizacdo, atualmente, é baseada em dois métodos: maquinas virtuais
(também conhecido como hypervisor) ou containers, que serdo detalhados no decorrer
do trabalho. A virtualizagdo por maquina virtual — também conhecida como VM — é
0 método utilizado pela maioria das empresas (BERNSTEIN, 2014), porém, a
virtualizacdo por containers tem crescido consideravelmente nos Gltimos anos, pois é
um método que exige mMenos recursos que as maguinas virtuais, sendo possivel
implantar e migrar servicos em um tempo menor. (NAIK, 2016). A ferramenta de
virtualizacdo por containers denominada Docker é consideravelmente utilizada
atualmente, sendo a lider mundial deste segmento no mercado (DOCKER. 2017).

Logo, o objetivo geral do trabalho é prover alta disponibilidade em sistemas de
containers Docker por meio do Docker Swarm e observar como o sistema se comporta
em situacOes de falhas rotineiras,como a queda de um servico do servidor ou até mesmo

um erro de sistema.

2 FUNDAMENTACAO TEORICA

2.1 Virtualizacdo por Hypervisor (maquinas virtuais)

60

n.11-2018 Profiscientia

A virtualizacdo neste método ocorre em nivel de hardware. Um hypervisor é o
software responsavel pelo gerenciamento de maquinas virtuais que sdo executadas sobre
o Sistema Operacional (SO) hospedeiro, ou seja, da prépria maquina fisica. Cada
maquina virtual possui o seu proprio SO (conhecido como convidado) com 0 seu
proprio ndcleo, aplicacbes e suas dependéncias (binarios e bibliotecas).

Existem dois tipos de hypervisors (Figura 1): Tipo 1 e Tipo 2. O Tipo 1, também
conhecido como hypervisor bare metal, funciona diretamente sobre o hardware da
maquina fisica e o Tipo 2, que funciona sobre o SO hospedeiro. A camada a mais
presente no Tipo 2 faz com que o Tipo 1 se sobressaia no quesito performance (BUI,
2015). As principais ferramentas de virtualizagdo que trabalham com hypervisors séo:

VMware, Xen, VirtualBox, KVM e Hyper-V.

Figura 1. Arquiteturas dos dois tipos de hypervisors

Hypervisor Tipo 1 Hypervisor Tipo 2

SO SO ; SO SO SO ; SO
Convidado Convidado = | Convidado Convidado Convidado = | Convidado
= I I I = I
Aplicacdo Aplicacdo Aplicacdo Aplicagdo Aplicagdo Aplicacdo

Hypervisor

Hypervisor

I Hardware da mdquina fisica

|

SO hospedeiro

I Hardware da maquina fisica |

Fonte: (Adaptado de THOLETI, 2011)

2.2 Virtualizacdo por Container

A virtualizagdo por container, diferente dos hypervisors, ocorre em nivel de
sistema operacional, ou seja, 0s containers estdo sempre sobre o sistema operacional
hospedeiro. E um tipo de virtualizacdo que utiliza o nicleo do sistema operacional
hospedeiro para executar multiplos ambientes (BUI, 2015).

Os containers ndo exigem sistemas operacionais convidados, isso faz com que
este método de virtualizagdo exija menos recursos da maquina fisica (enquanto uma
maquina virtual possui um tamanho em nivel de gigabytes, um container esta em nivel
de megabytes), entretanto, é possivel executar sistemas operacionais em containers. No

ponto de vista do sistema operacional hospedeiro, 0s containers séo executados como

61

n.11-2018 Profiscientia

processos. Os recursos que eles utilizam podem ser compartilhados com a maquina
fisica ou alocados separadamente para cada container (BUI, 2015). Nos containers sao
executados apenas as aplicacbes e suas dependéncias (binarios e bibliotecas). O
esquema basico da virtualizacdo por container é apresentado na Figura 2 (SHAVERS,
2017). As principais ferramentas de virtualizagdo baseada em containers sdo LXC
(Linux Containers), Azure Container Service e Docker.

Figura 2. Arquitetura bésica da virtualizagdo por containers

Container 3
App 3

Bins/Libs

Sistema Operacional

Hardware

LE O

Fonte: (Adaptado de SHAVERS, 2017)

2.3 Alta Disponibilidade

Atualmente existe uma dependéncia consideravel por servicos computacionais
para realizar tarefas de diversas naturezas, inclusive tarefas criticas, cujas falhas
causariam prejuizos materiais, financeiros ou até mesmo perda de vidas. No intuito de
mitigar esses prejuizos, sdo utilizadas diversas técnicas que visam garantir a
disponibilidade desses servigos (FILHO, 2004).

A demanda crescente por infraestruturas computacionais designadas a servirem
sistemas criticos faz com que a HA se torne um recurso de consideravel importancia
atualmente (Heidi, 2016). Um sistema de HA tem o objetivo de estar o maior tempo
possivel disponivel para que o funcionamento de seus servi¢os ndo sejam interrompidos,
pois, todo servico ou sistema esta suscetivel a falhas (PEREIRA, 2005).

As falhas comuns em uma infraestrutura computacional podem ser de natureza
fisica, causada pelo mau funcionamento de algum componente e que podem ser
originadas por eventos como curtos-circuito ou o fim da vida atil de um ou mais

componentes. De natureza humana, por meio da ma elaboracdo no projeto de sistemas,

62

n.11-2018 Profiscientia

assim como erros no processo de manutencdo e operacéo de sistemas (FILHO, 2004). E
possivel aplicar técnicas para contornar essas falhas, que sdo baseadas na replicacdo de
hardware e software (BASELINE DATA, 2016).

2.4 Docker

O Docker é a ferramenta de virtualizacdo por containers. Os desenvolvedores de
software a utilizam para eliminar problemas de compatibilidade em seus programas.
Operadores utilizam o Docker para executar e gerenciar as suas aplicagdes lado a lado
em containers isolados para obter uma melhor densidade computacional. Empresas
usam o Docker para acelerar o desenvolvimento e a integracdo dos seus softwares
(Docker, 2016). A ferramenta € instalada sobre o sistema operacional hospedeiro,

conforme a Figura 3.

Figura 2. Arquitetura do Docker

Container 3

App 3

Bins/Libs

Sistema Operacional

Hardware

LE O

Fonte: (Adaptado de DOCKER, 2016)

2.5 Docker Swarm

Disponibilizada a partir da versdao 1.12 do Docker, o Docker Swarm é uma
ferramenta nativa do Docker para a orquestragdo de clusters Docker. No contexto do
Docker Swarm, um swarm é um cluster de nés nos quais é possivel implantar servicos.
Um n6 é uma instancia do Docker em execucdo. E possivel executar um ou mais n6s em
uma maquina (fisica ou virtual), mas o mais comum é a distribuicdo dos nds em
multiplas maquinas (DOCKER DOCUMENTATION, 2017C).

O Docker Swarm dispde de um gerenciamento de cluster integrado ao Docker,

63

n.11-2018 Profiscientia

que permite utilizar o console do Docker para criar swarms nos quais sdo implantados
aplicacdes (DOCKER DOCUMENTATION, 2017C).

No Docker Swarm, é possivel declarar o nimero de tarefas a serem executadas
para cada servico desejado pelo usuério. Quando se escala para mais ou para menos, 0
gerenciador de swarm adapta automaticamente por meio da adicdo ou remocgdo de
tarefas para manter o estado desejado. O Docker Swarm dispde da funcionalidade de
balanceamento de carga, na qual é possivel expor as portas de servi¢os para um
balanceador de carga externo. Internamente, o gerenciador de swarm permite que o
usuario especifique como distribuir os containers de servi¢o entre os n6s (DOCKER
DOCUMENTATION, 2017C).

Quanto a HA, o Docker Swarm utiliza o gerenciador de swarm, que monitora
constantemente o estado do swarm e reconcilia qualquer diferenca entre o estado atual e
0 estado desejado pelo usuério. Por exemplo, um usuario define um servigo para ser
executado em 10 réplicas de um container, e uma maquina que hospeda 2 dessas
réplicas falha, o gerenciador de swarm atribui novas réplicas as outras maquinas que
estdo disponiveis e em execucdo (DOCKER DOCUMENTATION, 2017C).

3 MATERIAIS E METODOS

3.1 Cenarios de teste

Cada maquina virtual possui 1 unidade de armazenamento com RAID 5
composto por 3 SSDs Samsung Evo 850 com capacidade de 50GB, 8GB de memdria
RAM, 1 CPU Intel Xeon E52660 de 2.6GHz com 4 nucleos. O sistema operacional
utilizado nas maquinas virtuais é o Ubuntu Server.

Foram estabelecidos dois cenarios, suas estruturas estdo representada na Figura
4 e 5. As trés maquinas virtuais executardo o Docker Swarm e em ambos os ambientes
executardo apenas um container do servico, no intuito de confirmar a capacidade de
balanceamento de carga e HA do swarm.

O swarm se encontra em uma rede sobreposta a rede das VMs, esta rede possuli
por padrdo o nome "ingress"” e € criada assim que um servico € criado no swarm. Ha a
possibilidade da criacdo de uma rede personalizada, por meio do comando docker

network create, no qual é possivel definir o nome da rede, tipo do IP, gateway, entre

64

n.11-2018 Profiscientia

outras configuragoes.

Na figura 4, tem-se o ambiente destinado ao Estudo de Caso 1, neste cenario
sera utilizada uma Imagem Docker de um servidor web Nginx, 0 nome do servico €
"web", portanto, este servico se trata de um servidor de paginas da Internet. A Imagem
do Nginx foi utilizada por ser oficial e a mais popular do Docker Hub (DOCKER HUB,
2018), além do fato de o Nginx ser um dos servidores web mais utilizados no mercado
atualmente, estando em terceiro lugar e com uma adocdo crescente (NETCRAFT,
2018).

Figura 4. Esquema do cendrio do servigo web

192.168.222.50:80 192.168.222.51:80 192.168.222.52:80
porta publicada para porta publicada para porta publicada para
o servigo "web" o servigo "web" o servigo “web"

! swarm
1 “ingress”
1

5.0.2:80 ————

Servico "web

VM 1 - Docker01 VM 2 - Docker02 VM 3 - Docker03
192.168.222.50 192.168.222.51 192.168.222.52

Para os estudos de caso 2 e 3, tem-se um ambiente que realiza a integracdo de
sistemas distintos, pois executa um servico de Broker MQTT Mosquitto, de nome
"mqtt", representado na Figura 5. O Mosquitto é um servidor de mensagens para
dispositivos 10T que possui a caracteristica de ser leve, sendo possivel executa-lo até
mesmo em microcontroladores (ECLIPSE FOUNDATION, 2018).

Além das VMs e do Docker Swarm, o ambiente é composto por trés
microcontroladores ESP8266, que serdo responsaveis pelo envio de mensagens para o
Broker MQTT. O Node-RED, que se trata de uma ferramenta utilizada para a depuracéo
da programacdo de microcontroladores, que neste caso foi utilizado para a visualizacdo
das conexdes entre os ESPs e o Broker, assim como os dados enviados. O PC é 0 meio
que permite de fato visualizar o progresso dos testes, por meio da sua conexao ao Node-
RED.

65

n.11-2018 Profiscientia

Figura 5. Esquema do cendrio do servico mqtt

ESP1 ESP 2 ESP 3

min min mmn
H H H
H H H
i i pnd
192.168.222.50:1883 192.168.222.51:1883 192.168.222.52:1883

porta publicada para porta publicada para porta publicada para
o servigo "maqtt” o servico “mqtt” o servico “mqtt”

Docker Docker
Swarm

Docker
Swarm

.
. I SRR . [PO ! Rede overlay
T 10255021883 10255047883 1 swarm
- 1 "ingress”
e [L S - - .- - -I
VM 1- DockerO1 VM 2 - Docker02 VM 3 - Docker03
192168.222.50 192.168.222.51 192.168.222.52

3.2 Estudos de caso

Como citado na segdo anterior, foram definidos estudos de caso para a avaliagdo
da HA do Docker Swarm, os sistemas a serem executados nos servi¢os sdo o servidor
web Nginx e o Broker MQTT Mosquitto. A seguir, tém-se os detalhes de cada estudo de

caso a ser estudado com a ferramenta Docker Swarm.

3.2.1 Estudo de caso 1: Balanceamento de carga

Sera observado como o Docker Swarm realiza a 0 balanceamento de carga ao
solicitar um servi¢co a uma VM que ndo esteja executando o container deste servico, que
sera criado por meio do comando docker service create --publish 80:80 --name web
nginx, sendo que: --publish 80:80 expde a porta 80 dos containers para a porta 80 da
VM (é possivel utilizar portas diferentes, neste caso foi utilizada a 80 para o container e
para as VMs pelo fato desta porta ser a padrdo do protocolo HTTP), --name web define
que o nome do servico serd "web", e por fim, nginx € a Imagem Docker que sera
utilizada no servico. Logo ap6s a execucdo do comando, o Docker Swarm informara o
andamento da criagdo do servico e o seu status final (sucesso ou falha), sera possivel

acompanhar o status do servi¢co apds a sua criagdo, por meio do comando docker service

66

n.11-2018 Profiscientia

ps web. O container sera executado em apenas uma das trés VMs.

3.2.2 Estudo de caso 2: Situacdo de falha de VM

Ser4d uma continuacdo do Estudo de Caso 1, pois foi utilizado o mesmo
ambiente, porém, a VM que executava o Unico container sera desligada. Durante a
execucdo do Docker Swarm, uma das maquinas virtuais sera desligada, simulando uma
falha. Sera observado como Docker Swarm contornard este problema para garantir a

continuidade da execucgéo dos sistemas conforme o estado desejado.

3.2.3 Estudo de Caso 3: Alta disponibilidade no Broker MQTT com balanceamento de

carga

Serd observado como o swarm (cluster de containers) do Docker Swarm se
comporta em um sistema integrado. Este problema consiste na execucdo de um servico
de Broker MQTT no qual os microcontroladores ESP8266 estardo conectados um em
cada VM por meio de um IP e uma porta, 0 servico "mqtt" executard somente um
container em uma VM, o objetivo é verificar se o swarm serd capaz de realizar o
balanceamento de carga, ou seja, redirecionar requisi¢des do servico das VMs que nao

possuem containers do servico diretamente ao Unico container em execucao.

4 RESULTADOS E DISCUSSOES

4.1 Estudo de Caso 1

Figura 6. Comandos docker service create e docker ps

Na Figura 6 tem-se o resultado do comando da cria¢do do servico web, que foi

67

n.11-2018 Profiscientia

criada com sucesso. Em seguida, tem-se a saida do comando docker ps web, que
apresenta o status atual do servigo "web", exibindo o ID, 0 nome e em qual n6 (VM) o
container esta sendo executado.

Foi realizado um teste de acesso a pagina padrdo do Nginx por meio de um
navegador, na Figura 7 é possivel visualizar que, apesar de apenas uma VM executar 0
container do servico, foi possivel acessar pelos IPs de cada uma das 3 VMs (destacados
pela linha azul), dessa forma comprovando que o Docker Swarm realiza o

balanceamento de carga.

Figura 7. Acesso ao servico "webh" por meio das 3 VMs sendo realizado em um navegador

Welcome to nginx! X e we'come to ng i nx!

€ O 192.168.222.50
If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

Welcome to nginx! X EE
& O 19216822251 For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.
Welcome to nginx! X =+
Thank you for using nginx.
€ © 192.168.222.52

Outra prova do balanceamento de carga pode ser visto na Figura 8. O Nginx
possui um recurso de log acessivel por meio do comando docker service logs web, que
exibe o container utilizado (destaque vermelho), os respectivos IPs da rede "ingress"” de
cada VM (destaque verde), assim como os seus IPs reais (destaque amarelo).

Figura 8. Comando docker service logs web

4.2 Estudo de Caso 2

A VM desligada foi a Docker02. Na Figura 9, pode-se visualizar o que acontece

logo apos o seu desligamento. O comando docker node Is lista 0s nds e o status de cada

68

n.11-2018 Profiscientia

um, a Docker02 esta desativada (down), o comando docker service ps web mostra que o
container que anteriormente estava na Docker02 (destaque vermelho) foi migrado para a

Docker03 (destaque azul), dessa forma, garantindo a continuidade do servico.

Figura 9. comandos docker node Is e docker service ps web

A Figura 10 mostra 0 acesso ao servico por meio do navegador, desta vez, a
Docker02 estava indisponivel (destaque vermelho), enquanto as outras VMs
continuaram ativas (destaques azuis), com o Docker Swarm realizando o balanceamento

de carga e garantindo a HA do servico "web".

Figura 10. Acesso ao servigo web sendo realizado por meio de um navegador

Welcome to nginx! p L we'come to nginxl
€ ® 192.168.222.50
If you see this page, the nginx web server is successfully installed and
= working. Further configuration is required.

D 192.168.222.52 . | 3
— For online documentation and support please refer to nginx.org.

Commercial support is available at nginx.com.

Thank you for using nginx.

@ The connection was reset
Pro

Welcome to nginx! X @

D 192.168.222.51

Ao executar o comando docker service logs web (Figura 11) é possivel verificar
que a VM Docker02 nédo esta disponivel. Os acessos as outras VMs foi realizada com
éxito, desta vez, com o container sendo executado na VM Docker03 (destaque azul). E
possivel conferir que o ID do nd que representa a VM Docker02 (Destaque amarelo) é o

mesmo ID destacado na Figura 9.

69

n.11-2018 Profiscientia

Figura 11. Comando docker node Is e docker service logs web apds o desligamento da VM Docker02

4.2.1 O fator da limitacdo de acesso as maquinas e a solucdo por meio de um servidor

DNS

Apesar do Docker Swarm realizar o balanceamento de carga, existe uma
limitacdo, ndo é possivel definir um endereco IP ou um nome de servico que sirva para
acessar as 3 VMs, portanto, ndo é possivel acessar o servigco "web" por meio de um IP
de uma maquina com falha (screenshot do meio na Figura 10).

Para contornar este problema, foi utilizada a associacdo de uma URL
"www.luiz.com™ aos 3 enderecos IP das VMs, esta associacao foi realizada por meio de
um servidor DNS (mais detalhes no Anexo B), o que causou uma alteracdo no cenario

de testes, como demonstrado na Figura 12.

Figura 12. O cenério de testes do servigo web ap6s a adi¢ao do servidor DNS

Servidor
DNS

VM 4 - Docker04
192.168.222.53

[
www.luiz.com

[

192.168.222.50:80 192.168.222.51:80 192.168.222.52:80
porta publicada para porta publicada para porta publicada para
o servico "web” o servico “web" o servigo "web"
s ' :
'
i H
Docker Docker Docker
Swarm Swarm Swarm
. ... W~ . e e
! T) 1 Rede overlay
B e S S e e L e
! : 102550360 _ ' swarm
L] i : " "
[5.0.2 ' ingress
' '
VM 1 - Docker0O1 VM 2 - Docker02 VM 3 - Docker03
192.168.222.50 192168.222.51 192.168.222.52

Para a validagdo desta solucdo, foram realizados testes com o servico "web"

70

n.11-2018 Profiscientia

sendo executado com apenas 1 container e posteriormente com 10 containers. Em
ambos os testes foram realizados 4 acessos simultaneos a URL definida.

O servico "web" foi executado em um Unico container. O acesso simultaneo a
URL foi feita por meio do envio de um comando as 4 VMs ao mesmo tempo. A
realizacdo de comandos simultaneos foi realizado por meio do cliente SSH MobaXterm.
As 4 VMs conseguiram acessar a pagina padrdo do nginx. Ao observar o relatério do
servigo "web", nas Gltimas 4 linhas, tem-se o registro dos 4 Gltimos acesso a pagina do

servico por meio do Unico container em execuc¢do (Figura 13).

Figura 13. Relatdrio do servico web, com os 4 Gltimos registros de acesso a pagina do servico

web.10.1psap43x2ne9@ockero3
web.10.1psap43x2ne9@ockero3

web.lo.iEsae43x2ne9@Docker03

web.10.1psap43x2ne9@ockere3
root@ocker0l: /home/luiz# ||

A Figura 14 apresenta a lista de containers do servico "web" para o segundo

teste, sendo 10 réplicas. Aqui o procedimento foi o0 mesmo do teste anterior.

Figura 14. O servico web executando 10 containers

root@ocker0l: /home/luiz# docker service ps web

IMAGE NODE
nginx:latest Dockerol
nginx:latest Dockero3
nginx:latest Dockero2
nginx:latest Docker03
nginx:latest Dockerol
nginx:latest Docker02
nginx:latest Dockerol
nginx:latest Docker02
nginx:latest Docker03
nginx:latest Dockero3

D
299plglh8i127
pzsnm2910vc6

pstfmumiy6yk
tzxcllpxxhs

CONOOUVEWN

-
o

root@ocker0l:/home/luiz# [J

Desta vez, o relatorio do servico "web" (Figura 15) mostra que 3 dos 10
containers atenderam a requisicéo, assim provando que o uso de um servidor DNS pode

ser um complemento no balanceamento de carga do Docker Swarm.

71

n.11-2018 Profiscientia

Figura 15. Relatdrio do servigo web sendo executado em 10 containers, com os 4 Gltimos
registros de acesso a pagina do servigo
w?b;9.ggvx89tft8ef@Docker03
weé.?.Egvx89tft89f@Docker03

web .6.sy0kvpxxh2rr@ockere2
s T D A

web.5.njwvg826eqtr@ockerol

root@ocker0l:/home/luiz# |

4.3 Estudo de Caso 3

O servigco "mqtt" executou um Broker MQTT que recebeu as mensagens dos
ESPs, basicamente, o servico consiste no envio de mensagens do ESP8266 para o
Broker MQTT. Para a visualizagdo dessas mensagens, assim como 0 acompanhamento
geral da conexdo entre os ESPs e o Broker MQTT, foi utilizada a ferramenta Node-

RED. Na Figura 16 é possivel visualizar as 3 conexdes deste teste, todas online.

Figura 16. Representacdo das trés conexdes entre os ESP8266 e as VMs

: e
Docker 01 (—— | msg.payload ‘ =
@ connecte .
Docker 02— msg payload "=
‘_-\E’:l nno~t 2
= 8
DOCKEr 03 (et msg.payload

E possivel verificar a conexdo dos trés ESPs no Unico container do servico
"mqtt" por meio da visualizagdo do log do servigo. Para isso foi necessario acessar o
container e executar o comando tail -f mosquitto.log. Na Figura 17 tem-se a saida do
comando, mostrando que o container recebeu conexdes das trés VMs, por meio dos IPs

da rede "ingress" e a porta que foi exposta no servi¢o "mgtt" (destaque verde).

Figura 17. Execucéo do comando tail -f mosquitto.log dentro do container

O Node-RED permite a visualizacdo das mensagens que sdo enviadas pelos

72

n.11-2018 Profiscientia

ESPs ao Broker. No destaque é possivel visualizar 3 enderegcos MAC distintos (Figura
18, destaques azuis), cada um esta associado a um ESP8266. Os dados enviados pelos

ESPs sdo referentes a temperatura, umidade e luminosidade de uma sala.

Figura 18. Visualizag8o dos dados enviados pelos ESPs ao Broker MQTT

"AB:28:A6:15:F5:B5"

C
=
“1511488@53", "Temperatura” :

\.
C
a
® rt
2

n salaltemperatura pa d:sinng
Mac"™: "%C:EA:ES:GE:SE:EB“, “"Data™:
1511408054", "Temperatura" : 26.90,
Umidade” : 38.4€, "Luminosidade™: 123}"

n nsg-pa] - string -
:A6:17:AD: 595", "Data”
"Temperatura” 27.208,
: 35.5@, "Luminosidade": 193}

E importante ressaltar que o servico "mqtt" foi utilizado como Broker MQTT de
um Trabalho de Conclusdo de Curso sobre persisténcia de dados do protocolo MQTT
em um cluster de banco de dados MongoDB, que também foi executado como um
servigo no Docker Swarm (MIRANDA, 2017). A captura de tela na Figura 19 mostra
alguns detalhes acerca dos dados trafegados pelo Broker do servi¢co "mqtt"”, nota-se que
passaram 13.106.733 dados pelo servico.

Figura 19. Detalhes dos dados trafegados pelo servico mqgtt (MIRANDA, 2017)

db.getCollection('mgtt').stats (1024

(L) 0.103 sec.
Key Value Type
v &3 {11 fields }
" ns mqtt.mgtt
#| size 2361399
#. count 13106733
#| avgObjSize 184
#| storageSize 711560
W capped false
£3 wiredTiger { 14 fields }
| nindexes 1
#) totallndexSize 139960
v &3 indexSizes {1field }
& id_ 139960
#5 ok 1.0

73

n.11-2018 Profiscientia

5 CONCLUSOES

Pelos resultados obtidos, foi constatado que o Docker Swarm é uma ferramenta
que consegue alcancar a HA por meio da migracdo de containers de um nd para o outro,
bem como a capacidade de realizar o balanceamento de carga dos seus servigos por
meio do redirecionamento de conexfes de nds que ndo possuem container para aqueles
que possuem, embora necessite de ferramentas externas para redirecionar as solicitacdes
de acesso aos seus Servigos.

No Estudo de Caso 1 foi possivel verificar a capacidade de balanceamento de
carga do Docker Swarm por meio de um servico de um servidor web, sendo possivel
realizar o acesso ao servico por meio dos 3 IPs, apesar de apenas uma das VMs executar
0 container deste servico.

No Estudo de Caso 2, foi verificada a capacidade de HA no servico "web", por
meio de uma simulagdo de falha de VM. O Docker Swarm foi capaz de realizar a
migracdo do container da maquina com falha para outra que estava disponivel no
swarm, entretanto, foi preciso utilizar um servidor DNS para realizar o balanceamento
de carga ao acessar o0 servigo por meio de uma unica URL.

O Estudo de Caso 3 mostra que o Docker ¢é capaz de trabalhar com integracéo de
sistemas distintos, sendo possivel realizar a conexao de trés microcontroladores aos nés
do swarm, bem como a capacidade de balanceamento de carga em ambientes desta
natureza, ou seja, com sistemas distintos.

Conclui-se que o Docker Swarm é uma ferramenta ideal para a execucdo de
servigos criticos devido ao seu balanceamento de carga e a garantia de HA em seus

Servigos.

6 REFERENCIAS

BERNSTEIN, D. Containers and cloud: From LXC to docker to kubernetes. IEEE
Cloud Computing, 2014.

BUI, T. Analysis of Docker Security. 2015.

DATA, B. System High Availability and Hardware High Availability — What’s the

74

n.11-2018 Profiscientia

Difference? Baseline Data Services, 2016. Acesso em 13 de agosto de 2017. Disponivel
em:
<https://baseline-data.com/blog/high-availability/system-hardware-high-availability-diff

erences/>.

DOCKER. Docker for the Virtualization Admin. 2016. Disponivel em:
<https://goto.docker.com/rs/929-FJL-178/images/Docker-for-Virtualization-Admin-eBo
ok.pdf>.

DOCUMENTATION, D. About images, containers, and storage drivers. Docker Inc,
2017. Acesso em 11 de agosto de 2017. Disponivel em:
<https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#images-

and-layers>.

DOCUMENTATION, D. Docker Glossary. Docker Inc, 2017. Acesso em 11 de agosto

de 2017. Disponivel em: <https://docs.docker.com/glossary/?term=image>.

DOCUMENTATION, D. Overview of Docker Hub. Docker Inc, 2017. Acesso em 11

de agosto de 2017. Disponivel em: <https://docs.docker.com/docker-hub/>.

DOCUMENTATION, D. Swarm mode overview. Docker Inc, 2017. Acesso em 14 de
agosto de 2017. Disponivel em:
<https://docs.docker.com/engine/swarm/#feature-highlights>.

FILHO, N. A. P. Servicos de Pertinéncia para Clusters de Alta Disponibilidade.
Dissertacdo (Mestrado) — Universidade de S&o Paulo, Sdo Paulo, Brasil, 2004. 23
FOUNDATION, ECLIPSE. Eclipse Mosquitto™ - An open source MQTT broker.

Acesso em 06 de novembro de 2018. Disponivel em <https://mosquitto.org/>.
HEIDI, E. What is High Availability? DigitalOcean, 2016. Acesso em 20 de setembro

de 2017. Disponivel em:

<https://www.digitalocean.com/community/tutorials/what-is-high-availability>.

75

n.11-2018 Profiscientia

HUB, DOCKER. Explore Official Repositories. Acesso em 06 de novembro de 2018.
Disponivel em: <https://hub.docker.com/explore/>.

INC, D. Hardware and software requirements. Docker Inc, 2017. Acesso em 11 de
agosto de 2017. Disponivel em:
<https://docs.docker.com/datacenter/ucp/1.1/installation/system-requirements/>.

INC, D. What is Docker? Docker Inc, 2017. Acesso em 9 de julho de 2017. Disponivel
em: <https://www.docker.com/what-docker>.

LI, W.; KANSO, A. Comparing containers versus virtual machines for achieving high
availability. In: Proceedings - 2015 IEEE International Conference on Cloud
Engineering, IC2E 2015. [S.l.: s.n.], 2015]

MENEZES, D.; MATTOS, F. Virtualizacdo: VMWare e Xen. 2008.

MERKEL, D. Docker: Lightweight Linux Containers for Consistent Development and
Deployment. Linux Journal, v. 2014, n. 239, 2014.

MIRANDA, T. L. R.; PEREIRA, R. B. d. O. Implementacdo de um Cluster de banco de
dados no Raspberry Pi com MongoDB para replicacdo e persisténcia dos dados 10T.
2017.

NAIK, N. Building a virtual system of systems using docker swarm in multiple clouds.
In: ISSE 2016 - 2016 International Symposium on Systems Engineering - Proceedings
Papers. [S.l.: s.n.], 2016.

NETCRAFT. August 2018 Web Server Survey. Acesso em 06 de novembro de 2018.
Disponivel em <https://news.netcraft.com/archives/2018/08/24/august-2018-web-

server-survey.html>

PEREIRA, R. B. O. Alta Disponibilidade em Sistemas GNU/LINUX utilizando as
ferramentas Drbd, Heartbeat e Mon. 2005. 23

76

n.11-2018 Profiscientia

REDHAT. What is virtualization? RedHat, 2017. Acesso em 7 de julho de 2017.
Disponivel em:

<https://www.redhat.com/pt-br/topics/virtualization/what-is-virtualization>.

ROUSE, M. What is legacy application? TechTarget, 2017. Acesso em 01 de agosto de
2017. Disponivel em:

<http://searchitoperations.techtarget.com/denition/legacy-application>.

SHAVERS, M. 3 Drastic Reasons Containers are Causing a Seismic Shift in
Technology. LinkedIn, 2017. Acesso em 9 de agosto de 2017. Disponivel em:
<https://lwww.linkedin.com/pulse/3-drastic-reasons-containers-causing-seismic-shift-ma

rk-shavers>.
THOLETI, B. P. Learn about hypervisors, system virtualization, and how it works in a

cloud environment. IBM, 2011. Acesso em 15 de agosto de 2017. Disponivel em:

<https://www.ibm.com/developerworks/cloud/library/cl-hypervisorcompare/index.htm>

77

