
125

Estruturação do Processo
de Desenvolvimento de Software:
Uma Proposta para o Trabalho em Equipe

Maria Cristina Delgado Preti1

Cristiano Maciel2

Resumo: Este artigo discute o processo de desenvolvimento de software e o

ganho que se obtém com a padronização nos seus processos. O estudo em

questão sugere a estruturação de um processo de desenvolvimento de software

para a Diretoria de Tecnologia de Informação do Instituto Federal de Educação,

Ciência e Tecnologia de Mato Grosso (IFMT). Para tal, discute alguns modelos

de processos de desenvolvimento de software, os elementos da linguagem

UML e o paradigma da orientação a objetos, apresentando o resumo de alguns

trabalhos relacionados ao tema proposto.

Palavras-chave: Processo de desenvolvimento de software, modelo de pro-

cessos de software.

Abstract: This paper discusses the process of the software development and

the gain is that obtained by the standardization in its processes. This study

suggests the structuration of a process for software development for the In-

formation Technology Directory at the Federal Institute of Education, Science

and Technology of Mato Grosso (IFMT). Based on this, this study presents

some models of software development processes, the elements of the UML

language, the object-oriented paradigm. The summary of some studies related

to the mentioned theme was presented.

Keywords: Software development processes, models of software processes.

1	 	Especialista em Gestão de Projetos em Engenharia de Software, pelo Centro Universitário
Cândido Rondon; analista de Tecnologia da Informação da Gerência de Tecnologia da
Informação do IFMT – Campus Cuiabá. E-mail: maria.preti@cba.ifmt.edu.br.

2		 Doutor em Computação, pela Universidade Federal Fluminense; professor do Instituto de
Computação da Universidade Federal de Mato Grosso (UFMT). E-mail: cmaciel@ufmt.br.

126

Introdução

A falta de adoção de métodos, de ferramentas e de procedimentos no

desenvolvimento de softwares resulta em números expressivos de projetos

não concluídos ou em projetos concluídos que não atendem às necessidades

do cliente (PRESSMAN, 2006). Para solucionar esse problema, existe uma

área do conhecimento da computação denominada Engenharia de Software,

que surgiu em meados dos anos 1970, propondo a criação e a utilização de

sólidos princípios de engenharia, a fim de obter um software de maneira

econômica e confiável. Uma das proposições dessa ciência é o processo de

desenvolvimento de softwares, foco deste artigo.

De acordo com Paula Filho (2003), o processo de desenvolvimento

de software é um conjunto de passos parcialmente ordenados, consti-

tuídos por atividades, métodos, práticas e transformações, usadas para

atingir uma meta. A consolidação dessa forma de trabalho com vistas à

padronização permitirá que o produto final seja entregue dentro do prazo

estabelecido com eficiência e melhor qualidade, visto que o fluxo dos

processos e das atividades ligados ao desenvolvimento de um sistema

será mais ágil e a produtividade dos agentes envolvidos aumentada,

devido ao uso racional da mão de obra.

Com a recente estruturação ocorrida no IFMT, observou-se a carência

de um modelo de desenvolvimento de processo de software que permi-

tisse a padronização de processos e artefatos a serem usados pela equipe

de desenvolvimento. Portanto, este estudo propõe à Diretoria de Gestão

de Tecnologia de Informação (DGTI) a implantação de um modelo de

processo de desenvolvimento de software tendo por finalidade manter

integradas as equipes do IFMT, guiadas por um modelo único, trabalhando

de forma mais produtiva, com artefatos úteis e adequados, utilizando ainda

a mesma linguagem na documentação, na codificação e na comunicação

sistêmica. Tal pesquisa foi realizada com base em referências bibliográficas,

investigando, entre outros, experiências nesta área.

Para atingir o objetivo almejado, a seguir, serão abordados os modelos

de processos de desenvolvimento de software, os artefatos da linguagem

127

UML, o paradigma da orientação a objetos e um resumo de alguns trabalhos

relacionados ao tema investigado. Além disso, também será feita a proposta

de um processo de desenvolvimento de software para o IFMT.

Processos de Desenvolvimento de Software

O processo de desenvolvimento de software é um conjunto de ati-

vidades e de resultados associados necessários para construir aplicações

de alta qualidade. Ele forma a base para o controle gerencial do projeto,

estabelecendo o contexto no qual os métodos técnicos são aplicados,

os produtos de trabalho (modelos, documentos, dados, relatórios etc.)

produzidos e os marcos estabelecidos; então, a qualidade é assegura-

da e as modificações são adequadamente geradas (PRESSMAN, 2006;

SOMMERVILLE, 2003).

Os modelos foram originalmente propostos para colocar ordem no

caos do desenvolvimento de software. A construção dessas representa-

ções gráficas tem por finalidade comunicar a estrutura e o comportamento

do sistema, visualizar e controlar a sua arquitetura, gerenciar os riscos,

compreendê-lo melhor e descobrir oportunidades de simplificação e de

reuso. Além disso, proporciona um guia para a construção do sistema,

permitindo a documentação das decisões tomadas.

Há alguns modelos de processo produzidos pela Engenharia de

Software, com diferentes perspectivas para ajudar gestores e desenvol-

vedores de sistemas. A seguir, os modelos genéricos de desenvolvimento

de sistemas são abordados.

O modelo em cascata sugere uma abordagem sistemática e se-

quencial para o desenvolvimento de softwares, que começa com a

análise e a especificação dos requisitos estabelecidos por meio de

consulta ao cliente e progride ao longo do planejamento, da mode-

lagem, da construção e da implantação, culminando na manutenção

progressiva do software acabado. É adequado para servir como mo-

delo de processo útil em situações nas quais os requisitos são fixos,

128

bem compreendidos e os trabalhos devem prosseguir de forma linear

(PRESSMAN, 2006).

No desenvolvimento evolucionário, as atividades de especificação, de

desenvolvimento e de validação são realizadas concorrentemente, com

rápido feedback por meio dessas atividades. Há dois tipos: o exploratório,

em que o sistema evolui com o acréscimo de novas características, à medida

que elas são propostas pelo cliente; e prototipagem, em que o objetivo é

compreender os requisitos do cliente e, a partir disso, desenvolver uma

melhor definição de requisitos para o sistema (SOMMERVILLE, 2003).

O processo de iteração da abordagem evolucionária apoia-se em

dois modelos: incremental e espiral (ibid.).

O modelo incremental combina elementos do modelo em cascata,

aplicado de maneira iterativa. Aplica sequências lineares que produzem

“incrementos” do software passíveis de serem entregues. Um plano é

desenvolvido para o próximo incremento como resultado do uso e/ou

da avaliação. Esse processo é repetido após a realização de cada incre-

mento, até que o produto completo seja produzido. É indicado quando

não há mão de obra disponível para a implementação completa.

Já o modelo espiral mantém a abordagem sistemática passo a passo,

sugerida pelo modelo cascata, mas o incorpora a um arcabouço iterativo

que reflete mais realisticamente o mundo real. Cada loop da espiral é

dividido em quatro setores: definição de objetivos, avaliação e redução

de riscos, desenvolvimento e validação, e planejamento.

O desenvolvimento baseado em componentes incorpora muito das

características do modelo espiral e propõe soluções através da combina-

ção de componentes de software previamente preparados. As atividades

de modelagem e de construção começam com a identificação de compo-

nentes candidatos. Esses componentes podem ser projetados como mó-

dulos de software convencional, ou como classes, ou pacotes de classes

orientados a objetos. Esse modelo leva ao reuso de software. Contudo,

as adequações nos requisitos são inevitáveis (PRESSMAN, 2006).

Considerando que os sistemas implantados no IFMT variam de pe-

queno a médio porte e que, para essa situação, Sommerville (2003)

129

recomenda a adoção da abordagem de desenvolvimento evolucionária,

será proposto neste trabalho um processo híbrido: desenvolvimento

evolucionário do tipo prototipagem com uso do modelo espiral para a

iteração das fases do processo e o desenvolvimento baseado em com-

ponentes, essencial na agilidade do desenvolvimento.

A linguagem de modelagem adotada mundialmente para a visua-

lização, a documentação, a especificação e a construção de sistemas

orientados a objetos é a Unified Modeling Language (UML) – Lingua-

gem de Modelagem Unificada, dado que fornece vocabulário e regras

para a representação conceitual e física de um sistema. Ela indica como

criar e ler modelos de um sistema, mas não indica quais modelos devem

ser criados nem quando serão criados, pois isso é responsabilidade do

processo de desenvolvimento de software.

Atualmente, o paradigma de desenvolvimento de sistemas mais usado

é o Orientado a Objetos (OO), tendo o objeto e a classe como princi-

pal bloco de construção de todos os sistemas. Ressalte-se a facilidade

de comunicação entre desenvolvedores e usuários, pela associação de

objetos físicos com os de sistema.

Os sistemas Orientados a Objetos, quando construídos corretamente,

são flexíveis a mudanças, possuem estruturas bem conhecidas, redu-

zem a complexidade no desenvolvimento de softwares e aumentam

a produtividade de programadores. A probabilidade de o sistema ser

implementado efetivamente também é considerável.

Nas seções a seguir, serão apresentadas a UML, a linguagem padrão

para a modelagem de sistemas Orientados a Objetos adotada pelo Object
Management Group (OMG) desde 1997, e alguns trabalhos relacionados

a este estudo.

Utilizando a UML

A UML é uma linguagem gráfica, complexa e rica em recursos, própria

para a modelagem de sistemas. É utilizada pelo projetista de software

130

na decomposição do sistema em pedaços compreensíveis, porque reduz

a complexidade e facilita a visualização do desenho e da comunicação

entre os objetos.

Na UML, um modelo é composto de elementos (atores, casos de uso,

classes, objetos, estados, atividades etc.), relacionamentos (dependên-

cias, associações, generalizações e realizações) e diagramas (casos de

uso, classe, objeto, colaboração, componentes, implantação, pacotes,

atividade, sequência e estados) (LARMAN, 2000), assim descritos:

Caso de uso é um documento narrativo que descreve a sequência

de eventos de um ator (um agente externo que usa um sistema para

completar um processo). Auxilia na compreensão, na administração de

riscos, na delimitação do escopo e na elaboração de estimativas.

A ferramenta gráfica, diagrama de casos de uso, ilustra os atores com

figuras de traço simples, os casos de uso com formas ovais e a relação en-

tre eles, com flechas que indicam o fluxo de informação ou estímulo.

Para representar conceitos ou objetos no domínio do problema, são

usadas estruturas estáticas que definem operações. Ao conjunto dessas

estruturas, dá-se o nome de modelo conceitual, que é o artefato mais

importante da fase de análise Orientada a Objetos. Pode ser construído

em paralelo ao desenvolvimento dos casos de uso.

A seguir, tem-se o diagrama de sequência, para ilustrar os eventos

gerados pelos atores que são reconhecidos pelo sistema. Sua criação é

dependente do desenvolvimento prévio dos casos de uso.

Por fim, o diagrama de classes ilustra as especificações para a classe

de software e para as interfaces da aplicação. Inclui as seguintes informa-

ções: classes, associações, atributo e tipos de atributo; interfaces, com suas

operações e constantes; métodos; navegabilidade; e dependências.

As ferramentas CASE (Computer-Aided Software Engineering) são

ferramentas automatizadas de uso da Engenharia de Software para o

desenvolvimento de sistemas. São indispensáveis na modelagem visual

e também servem para apoiar a depuração e os testes.

Em acréscimo à definição da proposta de processo de desenvolvi-

mento de software para o IFMT feita neste artigo, que adota o modelo

131

híbrido como solução, indica-se a UML para documentação dos processos

e o paradigma da OO para o desenvolvimento de sistemas.

Trabalhos Relacionados

Aqui, apresenta-se um resumo da pesquisa feita sobre alguns tra-

balhos relacionados ao estudo em questão. Ressalta-se que não foram

encontrados na literatura, em busca via internet, muitos dos trabalhos

que descrevem experiências similares a esta.

Oliveira, Vasconcelos e Rouiller (2009) apresentam a proposta de um

ambiente de desenvolvimento de software centrado no processo. Esse

tipo de desenvolvimento surgiu com o objetivo de proporcionar uma

estrutura computacional que gerencie o intercâmbio de informações entre

os desenvolvedores, controlando as atividades realizadas, envolvendo,

assim, os recursos consumidos, os prazos determinados e as datas de

início de cada atividade.

A arquitetura contempla quatro tipos de usuários: projetista de pro-

cesso, gerente de processo, gerente de projetos e equipe de desenvol-

vimento; e quatro tipos de componentes: mecanismo de interação com

o usuário, mecanismo para o gerenciamento do processo no ambiente,

mecanismo de repositório do ambiente e mecanismo para a integração

de ferramentas ao ambiente. Embora a estrutura apresentada possa

estar caracterizada em um nível de completude capaz de atender às

necessidades de todas as atividades do ciclo de vida de um processo de

software, nesse estudo, ela não foi testada empiricamente. Para ajudar a

organização da implementação progressiva desse processo, utilizou-se

a tecnologia CASE.

Os resultados de projetos de implantação de processo de software

em microempresas do Estado de Goiás, descritos por Souza e Oliveira

(2009), referem-se às experiências realizadas entre 2000 e 2004, envolven-

do empresas de diferentes portes e com objetivos de negócio distintos.

A principal conclusão é a de que modelos genéricos, direcionados para

132

grandes empresas, não atendem aos requisitos das empresas goianas.

Além disso, subestimar os riscos de implantação de processo de software,

ou seja, não definir um plano de contingência para os problemas reduz

drasticamente as chances de sucesso. Uma boa análise de riscos, asso-

ciada a um plano para a monitoração e o controle desses riscos, pode

evitar o fracasso do projeto. A continuação do trabalho previu o desen-

volvimento de um método de implantação de processo de software,

baseado no MPS.BR. Os resultados obtidos nessa experiência servem de

base para o planejamento de projetos de implantação de processo de

software em empresas situadas em áreas pouco industrializadas.

Benitti, Seara e Schlindwein (2005) apresentam uma proposta metodo-

lógica para o processo de desenvolvimento de Software Educacional (SE)

que compreende tanto as questões pertinentes aos processos quanto os

aspectos relativos à concepção de SE. A proposta expõe um processo cons-

tituído basicamente de quatro etapas que se comunicam de forma iterativa

e incremental: concepção, elaboração, finalização e viabilização.

Na fase de concepção, a primeira atividade concentra-se em definir os

objetivos de aprendizagem e os requisitos do software, além de definir o

escopo e o público-alvo, e identificar a infraestrutura disponível na escola.

A fase da elaboração tem como objetivo a criação de um protótipo

funcional do software norteado pelos requisitos identificados na fase da

concepção. Essa fase subdivide-se, basicamente, em quatro atividades:

especificação do incremento, construção do protótipo, avaliação do

protótipo e validação preliminar.

A fase da finalização ocorre após uma análise positiva da avaliação

do uso do software pelos alunos. Essa fase subdivide-se em duas ativi-

dades: integração e elaboração da documentação.

A viabilização é a última fase do processo e é destinada aos usuários

do software. Segundo os envolvidos nesse projeto, a aplicação desse

processo tem demonstrado grande desempenho e facilidade de utilização

em desenvolvimentos realizados.

Coelho (2007) descreve os passos utilizados para a implantação

de um processo de desenvolvimento de software em uma cooperati-

133

va de software livre, denominada TecnoLivre. Partindo da análise da

cooperativa, de seus projetos e de suas equipes, ressalta a importância

da utilização de um processo de desenvolvimento de software que

tenha por meta a padronização do desenvolvimento, a fim de garan-

tir o atendimento do prazo, do preço e dos requisitos estabelecidos

para o produto. O estudo de alguns modelos de processos existentes

foi realizado com a finalidade de avaliá-los e escolher o que melhor

se enquadrava na realidade da TecnoLivre, ou até mesmo formalizar

um modelo customizado dentre as várias características dos modelos

estudados. Não tendo aplicação prática, funcionou como um exercício

que propôs um modelo de processo.

Todos os trabalhos acima mencionados, independentemente da

estrutura de processo adotada por cada autor, ratificam a necessidade

de padronização do desenvolvimento de software para que o produto

esteja pronto dentro do prazo e conforme os parâmetros estabelecidos

pela empresa.

Em seguida, será apresentada a proposta de um processo de desen-

volvimento de software para o IFMT – Campus Cuiabá.

Proposta de um Processo de Desenvolvimento
de Software (PDS) no IFMT

Para se propor um Processo de Desenvolvimento de Software (PDS)

ao IFMT – Campus Cuiabá, é importante considerar aspectos como o

seu ambiente (infraestrutura), a dinâmica de integração de sistemas e as

atividades e/ou artefatos para esse processo.

 Ambiente

Os Institutos Federais são instituições de educação superior, básica

e profissional pluricurriculares e multicampi, especializados na oferta

134

de educação profissional e tecnológica nas diferentes modalidades de

ensino, com base na conjugação de conhecimentos técnicos e tecnoló-

gicos com as suas práticas pedagógicas, nos termos da Lei nº 11.892, de

29 de dezembro de 2008.

A sua estrutura básica organizacional compreende, entre outros

departamentos, a Diretoria de Gestão de Tecnologia de Informação

(DGTI), que possui em seu rol de competências: o desenvolvimento

e a implantação de sistemas informatizados, o dimensionamento

de requisitos e de funcionalidades, a especificação da arquitetura,

a escolha das ferramentas de desenvolvimento e a codificação de

aplicativos.

Vale ressaltar que o IFMT sofreu recente processo de mudança,

passando de Centro Tecnológico para Instituto Federal. Houve a criação

da Reitoria como órgão executivo. As escolas técnicas e as unidades

descentralizadas de ensino deixaram de existir para formar os Institutos

Federais, ocasionando a integração das equipes de desenvolvimento,

que passaram a ser gerenciadas pela DGTI.

Dinâmica de Integração

O IFMT pretende integrar os sistemas administrativos, a fim de

possibilitar a automação e o armazenamento de todas as informações

de negócios, proporcionando maior confiabilidade dos dados e di-

minuição do trabalho.

A integração é possível pelo compartilhamento de informações co-

muns entre os diversos módulos que estão armazenados em uma base

de dados central, conforme ilustrado na Figura 1. Isso significa que, após

a entrada e armazenamento dos dados, o software integrado disponi-

biliza a informação para todos que dela necessitem na empresa. Faz-se

necessária, por conseguinte, a implantação de critérios de segurança

efetivos, claros, consistentes, em tempo real e com qualidade (REZENDE

e ABREU, 2009).

135

Figura 1. Integração de informações entre os módulos no IFMT.

Além dos pressupostos acima, é preciso que essa integração dê

exatidão e credibilidade às informações geradas, bem como propicie

a eliminação da informalidade de comunicação e de papéis. A tomada

de decisões também ganha outra dinâmica, pois, na execução de uma

alteração, todos os módulos são informados e se preparam, de forma

integrada, para determinado evento – tudo realizado em muito menos

tempo do que seria possível sem a presença do sistema.

A DGTI implantou, em alguns campi, o SIGA-EPCT, sistema inte-

grado de gestão acadêmica desenvolvido com tecnologias livres e de

forma colaborativa pelas próprias instituições participantes da Rede de

Educação Profissional, Científica e Tecnológica. Esse projeto tem o apoio

do Ministério da Educação (Mec), por meio da Secretaria de Educação

Profissional e Tecnológica (Setec). O SIGA-EPCT contempla dois siste-

mas: o SIGA-EDU, que automatiza a gestão dos processos institucionais

acadêmicos (Ensino, Pesquisa e Extensão), e o SIGA-ADM, que gere os

processos administrativos (Protocolo, Recursos Humanos, Almoxarifado,

Compras, Patrimônio etc.).

Além do SIGA-EPCT, também foi implantado o Enterprise Resource
Planning (ERP) ADempiere, que é um framework de código aberto.

Reitoria, Pró-reitorias,
Diretorias, Gerências,

Departamentos

Relatórios

Recursos Humanos

Funcionários

Base de Dados
Central

Almoxarifado

Patrimônio

Protocolo

Biblioteca

Proesso Seletivo

Acadêmico

Manutenção

Transporte

136

Proposta de Processo de Desenvolvimento de Software

A proposta de PDS em questão visa propiciar efetividade, continui-

dade, segurança e transparência à equipe de desenvolvimento.

De forma geral, os sistemas devem fornecer a visão do estado do

projeto a qualquer instante, servir como meio de comunicação entre os

envolvidos, indicando o seu nível de participação, manter um histórico

documental do projeto, sistema ou software, e ser a base para a fase e

subfases seguintes.

Para prover ao ambiente o controle e a evolução do PDS, serão utili-

zadas ferramentas específicas para repositório e integração. A definição

das tecnologias, bem como as ferramentas mais adequadas para cada

etapa do processo, deve acontecer no momento da sua implantação.

Desta forma, tem-se um PDS independente de tecnologia, não havendo

risco de defasagem tecnológica.

A equipe de desenvolvimento pode seguir o arcabouço definido

neste estudo para alcançar as metas de desenvolvimento. A estrutura

inclui cinco atividades: análise, projeto, implementação, implantação e

manutenção evolutiva.

A análise ou concepção é a primeira etapa do PDS. Ela enfatiza a

investigação do problema, produzindo compreensão ampla, mas pouco

profunda do sistema. Sugere-se que essa fase não dure mais do que umas

poucas semanas e produza um relatório sucinto de problemas, informan-

do se vale a pena continuar trabalhando no problema, se há condições

técnicas e financeiras, e se o cronograma é exequível. Em suma, informa

se o projeto é passível de ser concluído. Antecipando-se aos problemas, o

analista deve responder basicamente às seguintes perguntas: O projeto é

realizável? A equipe de desenvolvimento tem condições de realizá-lo? Há

tempo disponível? Pode-se comprar um pacote e adaptá-lo à necessidade

do Instituto, ao invés de construir outro totalmente novo? Há riscos na

execução desse projeto?

A fase de Análise prevê, para cada sistema, um conjunto de atividades

e/ou artefatos, abaixo descritos.

137

Relatório com uma análise da viabilidade: Elaborar um documento

que faça uma análise panorâmica do problema a ser tratado, descrevendo

os pontos críticos do projeto, as diferentes alternativas de soluções para

o problema e se o projeto será levado adiante ou não.

Levantamento dos requisitos: Prevê consultas com o cliente e

com os usuários finais do sistema para a definição: dos requisitos

funcionais, ou seja, as funções básicas que o sistema deve oferecer;

dos requisitos não-funcionais, ou seja, as restrições colocadas sobre

como o sistema deve realizar seus requisitos funcionais; das caracte-

rísticas que o sistema não deve exibir. Segundo Wazlawick (2004),

os requisitos funcionais podem ser, ainda, classificados em dois gru-

pos: evidentes, que são efetuados com o conhecimento do usuário;

e ocultos, que são efetuados pelo sistema sem o conhecimento do

usuário. Os requisitos não funcionais podem ser classificados como

obrigatórios e desejáveis. Deve-se também estabelecer um conjunto

de objetivos gerais que o sistema deve cumprir. Sugere-se utilizar um

template em formato de tabela para elencar os requisitos: o código

do requisito funcional (“F”, seguido de um número); nome do requi-

sito funcional (especificação curta); descrição (especificação longa e

detalhamento do requisito); categoria funcional (evidente ou oculto).

Adicionalmente, a cada requisito funcional, deve-se acrescentar uma

lista de requisitos não funcionais, contendo: código do requisito não

funcional (“NF”, seguido do número do requisito funcional, e de um

ponto e o número do requisito não funcional); nome do requisito

não funcional (especificação curta); restrição (especificação longa do

requisito não funcional); categoria (segurança, performance, compa-

tibilidade, etc.); obrigatoriedade (se o requisito é desejável ou obri-

gatório); permanência (se o requisito é permanente ou transitório).

Organização dos requisitos: Presume-se que os requisitos já foram

elencados, para, em seguida, organizá-los em grupos correlacionados de

forma a abordá-los nos ciclos iterativos. Os requisitos serão agrupados do

138

seguinte modo: identificação dos atores e dos casos de uso, elaboração

do diagrama de casos de uso e a construção do modelo conceitual que

envolve as ações: listar e desenhar os conceitos candidatos, acrescentar

as associações necessárias para registrar os relacionamentos e os atributos

necessários para combater os requisitos de informação.

Análise de componentes: Leva em consideração o levantamento

de requisitos, para fazer uma busca de componentes e implementar

a análise.

Criação do glossário: Cria um documento simples, que define os

termos que requerem esclarecimentos, de modo a melhorar a comuni-

cação e padronizar a linguagem compartilhada pela equipe. Deve-se

aperfeiçoá-lo em cada ciclo de desenvolvimento, à medida que novos

termos são encontrados.

Elaboração de um documento de análise de riscos: Lista-se o que

pode ocorrer de errado na gerência do projeto, visando transformar pro-

blemas em oportunidades. Por exemplo: um plano de contingência, de

ações e de pessoas responsáveis por tratar os riscos quando ocorrerem.

Elaboração de um documento para o planejamento da co-
municação: Define-se o que será comunicado, para quem, quando

e de que forma.

Cronograma de execução e custos: A construção do cronograma

depende dos seguintes fatores: tempo total estimado para o projeto (em

hora/pessoa); tempo disponível (em semanas ou meses); tamanho da

equipe; e estruturação da equipe.

A fase de Projeto visa produzir uma solução para o problema identi-

ficado na fase de Análise. Nesse momento, resta projetar uma arquitetura

de software e de hardware para realizar concretamente o sistema, isto

139

é, apresentar uma solução para o problema enunciado. As atividades

concernentes a essa etapa são:

Termo de abertura: Consiste na identificação do projeto, data e

versão; participações e responsabilidades; missão, justificativa, objetivo,

metas, requisitos, premissas, escopo, exclusões, riscos; prazo estimado,

previsão e assinatura.

Expansão de casos de uso: Consiste em descrever o caso de uso,

passo a passo. Primeiro, o caso de uso para cada requisito funcional; em

seguida, o(s) ator(es) e os interessados; depois, a pré-condição e pós-

condição; na sequência de passos principal (fluxo principal), descrever o

processo no qual tudo dá certo; por fim, tratar as sequências alternativas

associadas às possíveis exceções, ou seja, identificar e tratar as possíveis

exceções de interação (fluxos alternativos). Nessa fase, um template deve

ser usado pela equipe, para a padronização da documentação, podendo

adicionar novos itens ao template a partir do seu uso.

Elaboração de diagrama de sequência: Deve ser construído para o

fluxo principal de cada caso de uso. Nessa fase, o importante é identificar

as operações e consultas de sistema necessárias.

Elaboração de modelo conceitual: Descreve a informação que o

sistema vai gerenciar, baseada no domínio do problema, apresentando

somente o aspecto estático da informação. Deve-se representar a infor-

mação definindo os seguintes elementos: os conceitos, que são repre-

sentados pelas classes; os atributos; e as associações.

Construção de diagrama de classe: Baseia-se no modelo conceitual,

adicionado de algumas informações cuja obtenção não foi possível na

fase de análise. Acrescer os seguintes elementos: os métodos; as flechas

de navegabilidade das associações; e a informação sobre os tipos dos

atributos e dos métodos.

140

Elaboração de projeto da camada de interface: Deve-se dividir

a camada de interface em duas subcamadas: de apresentação e de apli-

cação. A primeira é uma camada com as classes que representam os

objetos gráficos de interface, cujas responsabilidades se resumem em

receber dados e comandos do usuário e em apresentar-lhe resultados.

Já a segunda é uma camada que controla a lógica de interface, abrindo e

fechando janelas, habilitando e desabilitando botões. Sugere-se utilizar a

avaliação heurística para a inspeção de usabilidade das interfaces, consi-

derando os fatores expostos por Maciel et al. (2004), para a qual devem

ser elaborados instrumentos e roteiros a fim de orientar os especialistas

que realizarão os testes.

Elaboração de projeto da camada de persistência: Cabe ao projetis-

ta indicar quais ferramentas de persistência serão adotadas e apresentá-las

aos demais membros da equipe. Essa atividade deve construir o esquema

do banco de dados, criar os índices, especificar o armazenamento físico

dos dados, definir as visões sobre os dados armazenados, atribuir os

direitos de acesso e definir as políticas de backup dos dados.

Especificação de framework: Seleciona uma arquitetura reusável,

que fornece a estrutura e o comportamento genéricos para uma família

de abstrações de software dentro de um contexto.

Durante a fase de Implementação, o projeto de software é compre-

endido como um conjunto de programas ou unidades de programa,

abrangendo as atividades:

Codificação: Utilizar o paradigma da orientação a objetos, elegendo

a linguagem para uso de acordo com a habilidade da equipe no mo-

mento.

Testes: Utilizar o modelo espiral, iniciando pelo teste de unidade que

se concentra em cada unidade do software implementado. Após essa

141

etapa, deve-se progredir para o teste de integração, em que o foco fica no

projeto e na construção da arquitetura de software. Ato contínuo, realizar

o teste de validação, em que os requisitos estabelecidos como parte da

análise dos requisitos são validados em contraste com o software que

acabou de ser construído. Por último, realizar o teste integrado de sistema:

o software e os outros elementos do sistema são testados como um todo.

Nessa fase, as interfaces podem ser novamente testadas, possivelmente,

já com os usuários finais.

Integração: Agrupar os sistemas abordados no item ‘Dinâmica de

Integração’, para a formação de um sistema único.

Na fase de Instalação e Implantação, o sistema é implantado no

ambiente no qual deverá operar. Para essa etapa, duas atividades são

necessárias: operação e treinamento. A operação envolve, quando ne-

cessário, a migração do banco de dados existente. Por sua vez, o treina-

mento se comprometerá com a organização de sessões de treinamento

para os usuários.

Na fase de Manutenção e Evolução, devem-se corrigir eventuais erros

e/ou na melhoria do sistema, ao longo da vida útil do software. Quando

necessário, deve haver correções e atualizações nos artefatos provenientes

das fases de análise e de projeto do sistema.

Os ciclos de análise, de projeto, de implementação e de testes são

repetidos tantas vezes quantas forem necessárias para desenvolver todo

o sistema, conforme mostra a Figura 2. Em cada ciclo, um conjunto dife-

rente de casos de uso é abordado, segundo as prioridades do momento.

Dessa forma, procura-se produzir uma solução completa e funcional para

cada um dos processos associados ao ciclo.

142

Figura 2. Proposta para o processo de desenvolvimento de software
no IFMT.

Conforme já relatado, para implantar esse processo com eficiência

e consistência, é importante definir as ferramentas que automatizarão

os processos e artefatos, e que farão o controle de versão do projeto de

desenvolvimento do software.

Sugere-se que manuais e documentos sejam elaborados durante todo

o processo de desenvolvimento do software, como medida de precaução

contra a eventual ausência ou troca de pessoas do projeto, minimizando,

assim, a dependência dos recursos humanos envolvidos no projeto.

considEraçÕEs finais

O IFMT pretende unificar os sistemas, com o intuito de alcançar a

integração total entre eles, a fim de agilizar os processos administrativos

internos. Esse processo deve ser implantado gradativamente, em cada

área funcional, para melhor controle e acompanhamento do processo.

Para isso, a definição de estratégias depende de fatores humanos orga-

nizacionais e temporais, relacionados a cada área funcional.

Projeto
Termo de abertura
Expanção de casos de uso
Expanção de diagrama de sequência
Elaboração de modelo conceitual
Construção de diagrama de classe
Elaboração de projeto da camada de interface
Construção de projeto de persistência
Especificação de framework

Análise
Análise de viabilidade
Levantamento de requisitos
Organização dos requisitos
Análise dos componentes
Glossário
Documentos de análise de risco
Documentos para o planejamento da Comunicação
Cronograma

Manutenção e Evolução

Implantação
Codificação
Testes
Integração

Instalação e Implantação
Operação
Treinamento

143

O estabelecimento de um PDS é essencial nessa integração, por-

que permite organizar e guiar a equipe de desenvolvimento de forma

ordenada, além de ser de extrema importância no desenvolvimento

de novos sistemas.

A proposta do PDS sugerida neste artigo deverá ser discutida

em reunião com todos os membros da equipe de desenvolvimento

e com os dirigentes da Reitoria que estiverem diretamente ligados

ao assunto, para aperfeiçoá-la e implantá-la. Ela é uma iniciativa de

apoio à equipe de desenvolvimento.

Cabe destacar que, em meio às dificuldades enfrentadas na elabo-

ração dessa proposta, a recente reestruturação organizacional por que

passou o IFMT impactou sobremaneira o PDS, devido às constantes

modificações exigidas e que representam um risco iminente, uma vez

que ainda não foi consolidada.

Referências

BENITTI, F. B. V.; SEARA, E. F. R; SCHLINDWEIN, L. M. Processo de desenvol-

vimento de software educacional: proposta e experimentação. Revista Novas

Tecnologias na Educação, Porto Alegre: UFRGS, n. 1, v. 3, mai. 2005. (Texto

apresentado no V Ciclo de Palestras Novas Tecnologias na Educação.)

COELHO, A. C. Estudo e proposta de um Processo de Desenvolvimento de

Software em uma Cooperativa de Software Livre. Lavras, 2007. Monografia

(Graduação em Ciência da Computação), UFLA.

FERRAMENTAS CASE. Disponível em: imasters.uol.com.br/artigo/3048/uml/

ferramentas_case/. Acesso em: 10 out. 2009.

GOVERNO FEDERAL. Lei nº 11.892, de 29 de dezembro de 2008. Lex: cole-

tânea de legislação e jurisprudência. Disponível em: www.planalto.gov.br/

ccivil_03/_ato2007-2010/2008/lei/l11892.htm. Acesso em: 7 ago. 2009.

LARMAN, C. Utilizando UML e Padrões: uma introdução à análise e ao projeto

Orientados a Objetos. [s.l.]: Bookman, 2000.

144

MACIEL, C.; et al. Avaliação heurística de sítios na Web. Cuiabá: SUCESU-MT,

2004. (Conferência originalmente proferida na Sociedade do Conhecimento.

Cuiabá: PAK Multimídia, 2004.)

OLIVEIRA, S. R. B.; VASCONCELOS, A. M. L. de; ROUILLER, A. C. Uma proposta

de um ambiente de implementação de processo de software. Disponível em:

www.dcc.ufla.br/infocomp/artigos/v4.1/art09.pdf. Acesso em: 10 out. 2009.

PAULA FILHO, W. Engenharia de Software e fundamentos, métodos e pa-

drões. 2 ed. [s.l.]: LTC – Livros Técnicos e Científicos Editora S.A., 2003.

PRESSMAN, Roger S. Engenharia de Software. 6. ed. [s.l.]: McGraw, 2006.

RENAPI – Rede de Pesquisa e Inovação em Tecnologias Digitais. Disponível

em: www.renapi.gov.br/sigaepct/o-projeto/conheca-o-projeto. Acesso em: 9

ago. 2011.

REZENDE, D. A.; ABREU, A. F. de. Tecnologia da informação aplicada a

sistemas de informações empresariais: o papel estratégico da informação e

dos sistemas de informação nas empresas. 6. ed. São Paulo: Atlas, 2009.

SOMMERVILLE, I. Engenharia de Software. 6. ed. [s.l.]: Addison Wesley,

2003.

SOUZA, A. S. de; OLIVEIRA, J. L. de. Experiências de implantação de processo

de software em Goiás. Disponível em: www.softex.br/portal/softexweb/upload

Documents/_mpsbr/ArtigoMPSBR.pdf. Acesso em: 11 out. 2009. (Publicado na

Sociedade Brasileira para Promoção da Exportação de Software – SOFTEX.)

WAZLAWICK, R. S. Análise e projeto de sistemas de informação Orientado

a Objetos. 6. ed. [s.l.]: Elsevier, 2004.

